Chapter 14 Developing a Standard Method

Chapter 14

1. (a) The response when A = 0 and B = 0 is 1.68, which we represent
as (4, B, response) or, in this case, (0, 0, 1.68). For the first cycle, we
increase A in steps of one until the response begins to decrease or until
we reach a boundary, obtaining the following additional results:

(1,0, 1.88), (2, 0, 2.00), (3, 0, 2.04), (4, 0, 2.00)

For the second cycle, we return to (3, 0, 2.04) and increase B in steps
of one, obtaining these results:

(3, 1, 2.56), (3, 2, 3.00), (3, 3, 3.306), (3, 4, 3.64),
(3,5, 3.84), (3, 6, 3.96), (3, 7, 4.00), (3, 8, 3.96)

For the third cycle, we return to (3, 7, 4.00) and increase A in steps of
one, obtaining a result of (4, 7, 3.96). Because this response is smaller
than our current best response of 4.00, we try decreasing A by a step
of one, which gives (2, 7, 3.96). Having explored the response in all
directions around (3, 7, 4.00), we know that the optimum response

is4.00at A=3and B=7.

Figure SM14.1a shows the progress of the optimization as a three-di-
mensional scatterplot with the figure’s floor showing a contour plot
of the response surface. Figure SM14.1b shows a three-dimensional
surface plot of the response surface.

(b) The response when A = 0 and B = 0 is 4.00, which we represent as
(0, 0, 4.00). For the first cycle, we increase A in steps of one until the
response begins to decrease or until we reach a boundary, obtaining a
results of (1, 0, 3.60); as this response is smaller than the initial step,
this ends the first cycle.
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Figure SM14.1 The progress of a one-factor-at-a-time optimization for the equa-

tion in Problem 1la is shown in (a) as a scatterplot in three dimensions with a
S

contour plot of the response surface on the figure’s floor. The full response surface

is shown in (b). The legend shows the colors used for the individual contour lines;

the response surface provides for a greater resolution in the response by using

gradations between these colors.

At this point, our best response is 2.04 at

A=3andat B=0.

At this point, our best response is 4.00 at

A=3andatB=7.
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Figure SM14.2 The progress of a one-factor-at-a-time optimization for the equa-
tion in Problem 1b is shown in (a) as a scatterplot in three dimensions with a
contour plot of the response surface on the figure’s floor. The full response surface
is shown in (b). The legend shows the colors used for the individual contour lines;
the response surface provides for a greater resolution in the response by using
gradations between these colors.

We begin the second cycle by returning to (0, 0, 4.00) and increase
the value of B by one, obtaining a result of (0, 1, 4.00). Because the
response did not increase, we end the second cycle and, for the third
cycle, we increase the value of A, obtaining a result of (1, 1, 3.68).
Continuing in this fashion, the remainder of the steps are

Note that until we reach 4= 0and B=6, (0, 1, 400), (0, 2, 400), (1, 2, 376), (0, 2, 400), (0, 3, 400)
we keep probing toward larger values of A

without increasing the response, and then (1’ 3, 384)) (O) 3, 400), (0, 4, 400)) (1) 4) 392), (0, 4, 400)
probing toward larger values of B, also

without increasing the response. Once we (0’ 5, 400)’ (1’ 5 400)’ (0’ 5, 400)’ (0’ 6, 400)’ (1’ 6, 408)
reach 4 = 0 and B = 6, however, we find (2, 6,4.16), (3, 6, 4.24), (4, 6, 4.32), (5, 6, 4.40), (6, 6, 4.48)
that an increase in A finally increases the

response. Once we reach the boundary (7, 6, 456), (8, 0, 464), (9, 6, 472), (10, 0, 480), (10, 7, 560)
for A, we continue to increase B until we

reach the optimum response at 4 = 10 (10, 8, 6.40), (10, 9, 7.20), (10, 10, 8.00)

and B = 10.

The optimum response is 8.00 at A = 10 and B = 10.

Figure SM14.2a shows the progress of the optimization as a three-di-
mensional scatterplot with the figure’s floor showing a contour plot
for the response surface. Figure SM14.2b shows a three-dimensional
surface plot of the response surface.

(c) The response when A = 0 and B = 0 is 3.267, which we represent
as (0, 0, 3.267). For the first cycle, we increase A in steps of one until
the response begins to decrease or until we reach a boundary, obtain-
ing the following additional results:

(1,0, 4.651), (2,0, 5.736), (3, 0, 6.521),

At this point, our best response is 7.187 at (4, 0,7.004), (5,0, 7.187), (6,0, 7.068)
A=5andatB=0.
e For the second cycle, we return to (5, 0, 7.187) and increase B in steps

of one, obtaining these results:
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Figure SM14.3 The progress of a one-factor-at-a-time optimization for the equa-
tion in Problem Ic is shown in (a) as a scatterplot in three dimensions with a
contour plot of the response surface on the figure’s floor. The full response surface
is shown in (b). The legend shows the colors used for the individual contour lines;
the response surface provides for a greater resolution in the response by using
gradations between these colors.

(5, 1,7.436), (5, 2,7.631), (5, 3, 7.772),
(5, 4,7.858), (5, 5,7.889), (5, 6, 7.865)

For the next cycle, we return to (5, 5, 7.889) and increase A in steps of
one, obtaining a response for (6, 5, 7.481) that is smaller; probing in
the other direction gives (4, 5, 7.996) and then (3, 5, 7.801). Return-
ing to (4, 5, 7.966), we find our optimum response at (4, 6, 8.003),
with movement in all other directions giving a smaller response. Note
that using a fixed step size of one prevents us from reaching the true
optimum at 4 = 3.91 and B = 6.22.

Figure SM14.3a shows the progress of the optimization as a three-di-
mensional scatterplot with the figure’s floor showing a contour plot
for the response surface. Figure SM14.3b shows a three-dimensional
surface plot of the response surface.

2. Given a step size of 1.0 in both directions and A = 0 and B =0 as
the starting point for the first simplex, the other two vertices for the
first simplex are at A = 1 and at B=0, and at A = 1.5 and at B =
0.87. The responses for the first three vertices are (0, 0, 3.264), (1.0,
0, 4.651), and (0.5, 0.87, 4.442), respectively. The vertex with the
worst response is (0, 0, 3.264); thus, we reject this vertex and replace
it with coordinates of

A=2(150)—0 =15

B=2(982E0) 0 =087

The following table summarizes all the steps in the simplex optimiza-
tion. The column labeled “vertex” shows the 25 unique experiments
along with their values for 4, for B, and for the response. The column

At this point, our best response is 7.889 at
A=5andat B=5.
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Figure SM14.4 Two views showing the
progress of a simplex optimization of the
equation in Problem 1c in (a) three dimen-
sions and in (b) two dimensions. The leg-
end shows the colors used for the individ-
ual contour lines. Figure SM14.3b shows
the full response surface for this problem.

. lb
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(a, b,)

Figure SM14.5 Diagram showing vertices
of original simplex and the reflection of the
worst vertex across the midpoint (red cir-
cle) of the best and the next-best vertices to
give the new vertex (green circle). See text
for additional details.

labeled “simplex” shows the three vertices that make up each simplex.
For each simplex, the vertex that we reject is shown in bold font; note
that on two occasions, the rejected vertex, shown in bold-italic font,
has the second-worst response (either because of a boundary condi-
tion or because the new vertex has the worst response)

vertex A B response  simplex

1 0 0 3.264 —

2 1.0 0 4.651 —

3 0.5 0.87 4.442 1,2,3

4 L5 087 5.627 2,3,4

5 20 O 5.736 2,4,5

6 25 087 6.512 4,5,6

7 30 0 6.521 5,6,7

8 35 0.87 7.096 6,7,8

9 40 0 7.004 7,8,9
10 45 087 7378 89,10
11 40 174 7.504 8,10,11
12 50 174 7.586 10,11, 12
13 45 2061 7745 11,12,13
14 55 261 7.626 12,13,14
15 50 3.48 7.820 13,14,15
16 40 348 7.839 13,15,16
17 45 435 7947 15,16,17
18 35 435 7866 16,17,18
19 40 522 8.008 17,18,19
20 50 522 7.888 17,19,20
21 45 6.09 7983 19,2021
22 3.5 6.09 8.002 19,21,22
23 3.0 522 7.826 19,22,23
24 3.5 435 7.866 19,2324
25 45 435 7947 19,24,25

Figure SM14.4 shows the progress of the simplex optimization in
three dimensions and in two dimensions.

To help us in the derivation, we will use the diagram shown in Figure
SM14.5 where 2 and 4 are the coordinates of a vertex, and w, &, s, and
n identify the vertex with, respectively, the worst response, the best
response, the second-best response, and the new vertex. The red cir-
cle marks the midpoint between the best vertex and the second-best
vertex; its coordinates are
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_ ay T a
A = =5
me: bb_z}_bs

The distance along the z-axis between the worst vertex’s coordinate of
a,,and the midpoints coordinate of @y i
a,ta 4
2 w
The distance along the a-axis between the worst vertex’s coordinate
and the new vertex’s coordinate is twice that to the midpoint, which
means the 2 coordinate for the new vertex is

a, = 2(%_ ﬂw>+ﬂw

which simplifies to equation 14.3

Using the same approach for coordinates relative to the 4-axis yields

b= o)y,

equation 14.4

In coded form, the values for 4, &,, b,, and b, are

bo = (592 + 2.08 + 4.48 + 3.52) = 4.00
b= (592 + 2.08 — 448 — 3.52) = 0
be = +(5.92 = 2.08 + 4.48 — 3.52) = 1.20

b = 1(5.92 - 2.08 — 448 + 352) = 0.72

which gives us the following equation for the response surface in
coded form

R = 4.00 + 1.208" + 0.724" B*

To convert this equation into its uncoded form, we first note the
following relationships between coded and uncoded values for 4 and
for B

A=5+34" B=5+38

_A_5 . _B_5
A=53-3 BF=3"3

Substituting these two equations back into the response surface’s cod-
ed equation gives

The value for the coordinate #,, is the val-
ue for the coordinate @, plus the distance
along the a-axis between the new vertex
and the worst vertex.
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When we examine carefully both equations,
we see they convey the same information: that
the system’s response depends on the relative
values of 4 and B (or A* and B*) and that
the affect of A (or A*) depends on the value
of B (or B*), with larger values of A (or more
positive values of A*) decreasing the response
for smaller values of B (or more negative val-
ues of B¥).

Although the mathematical form of the equa-
tion is important, it is more important that we
interpret what it tells us about how each factor
affects the response.
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R=4.00 + 1.20B* +0.72A*B* R=4.00 - 0.40A +0.08AB

Figure SM14.6 Response surfaces based on the (a) coded and the (b) uncoded
equations derived from the data in Problem 4. Note that the two response surfaces
are identical even though their equations are very different.

R=400+120(8 - 3)+072(4 - 3)(5 - 3)

R = 4.00 + 0.40B — 2.00 + 0.084B — 0.404 — 0.408 + 2.00
R = 4.00 — 0.404 + 0.084B

At first glance, the coded and the uncoded equations seem quite dif-
ferent, with the coded equation showing a first-order effect in B* and
an interaction between A* and B*, and the uncoded equation show-
ing a first-order effect in 4 and an interaction between A4 and B. As
we see in Figure SM14.6, however, their respective response surfaces
are identical.

5. (a) Letting 2 represent Ca and letting & represent Al, the values for 4,
b, b;, and b, in coded form are

by = %(54.29 + 98.44 + 19.18 + 38.53) = 52.61

b = (5429 + 98.44 — 19.18 — 38.53) = 23.755
b = (5429 — 98.44 + 19.18 — 38.53) = ~15.875

bu = (5429 — 98.44 — 19.18 + 38.53) = -6.20

which gives us the following equation for the response surface in
coded form

R = 52.610 + 23.755Ca™ — 15.875A" — 6.20Ca™ Al

(b) The original data shows that a larger concentration of Al sup-
presses the signal for Ca; thus, we want to find the maximum con-
centration of Al that results in a decrease in the response of less than
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5%. First, we determine the response for a solution that is 6.00 ppm
in Ca and that has no Al. The following equations relate the actual
concentrations of each species to its coded form

Ca=7+3Ca~ Al = 80+ 80A

Substituting in 6.00 ppm for Cz and 0.00 ppm for A/ gives —1/3 for
Ca* and -1 for A/*. Substituting these values back into the response
surface’s coded equation

R = 52610 +23.755(5) = 15875 (-1) — 6.20( 5 ) 1)

gives the response as 58.50. Decreasing this response by 5% leaves us
with a response of 55.58. Substituting this response into the response
surface’s coded equation, along with the coded value of —1/3 for Ca*,
and solving for A/* gives

55.58 = 52.610 + 23.755(5-) — 158754 — 6.20(5-)ar

10.88 = — 13.814/°
Al = -0.789

The maximum allowed concentration of aluminum, therefore, is

Al = 80 + 80(-0.789) = 16.9 ppm Al
(a) The values for by, 6,, 6., b,, b,., b b »» and /9 . in coded form are

28+ 17 4L 34
b°_8< 56 + 51 + 42 + 36
28 + 17 — 41 + 34 —

( 56 + 51 — 42 + 36

28 — 17 + 41 + 34 —

) = 38.125 = 38.1

b= % >:—3.625::—3.6

b, = é( 56—51+42+36>:0'125$0'1
L [-28 — 17 — 41 — 34 +

b= 8( 56 4 51 +42+36>: 8125 =81
L (28 — 17 — 41 + 34 +

b’”:§< 56 — 51 —42+36>: 0375 =04
(28 — 17 + 41 — 34 —

@z:§( 56 + 51 —42—1—36): 0875209
L (28 + 17 — 41 — 34 —
8( 56 — 51 +42+36> - /5=
L(-28 + 17 + 41 — 34 +

‘”:§< 56 — 51 —42+36>:_0'625$_0'6
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The coded equation for the response surface, therefore, is
R=2381—36X"+ 0.1V + 8.1 +
04X*Y  + 09X 2 — 747 — 0.6 X V' *

(b) The important effects are the temperature (X*) and the reactant’s
concentration (Z*), and an interaction between the reactant’s concen-
tration and the type of catalyst (Y*2*), which leave us with

R = 38.1 —3.6X" + 812 — 74V~

(c) Because the catalyst is a categorical variable, not a numerical vari-
able, we cannot transform its coded value (¥*) into a number.

(d) The response surface’s simple coded equation shows us that the
effect of the catalyst depends on the reactant’s concentration as it ap-
pears only in the interaction term Y*Z*. For smaller concentrations
of reactant—when Z* is less than 0 or the reactant’s concentration
is less than 0.375 M—catalyst B is the best choice because the term
—7.4Y*Z* is positive; the opposite is true for larger concentrations of
reactant—when Z* is greater than 0 or the reactant’s concentration is
greater than 0.375 M—where catalyst A is the best choice.

(e) For the temperature and the concentration of reactant, the follow-
ing equations relate a coded value to its actual value

X =130 +10X* Z=0.375+ 0.12527

Substituting in the desired temperature and concentration, and solv-
ing for X* and for Z* gives

125 = 130 + 10X* 0.45 = 0.375 + 0.12527
-5 = 10X* 0.075 + 0.1252°
X=-05 Z =06

Because Z* is greater than zero, we know that the best catalyst is type
A, for which Y* is —1. Substituting these values into the response
surface’s coded equation gives the percent yield as

R = 38.1 —3.6(-0.5) + 8.1(0.6) — 7.4(-1)(0.6) = 49.2%
(a) The values for by, 6,, 6., b,, b,., b b » and &, in coded form are

U Uxy Ux2 Xyz

b:1<1.55+5.40+350+675+ ) 175 418
‘8 2.45 + 3.60 + 3.05 + 7.10 ' '
, :1<—1.55+5.40—3.50+6.75— ): | 538 = 1.54
* 8 2.45 + 3.60 — 3.05 + 7.10 ' '
, :L(—1.55—5.40+3.50+6.75— ): 0925 = 0.9
r8 2.45 — 3.60 + 3.05 + 7.10 ' ‘
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L1 <_1.55 —5.40 — 3,50 — 6.75 +

= -0.125 = -0.12
2.45 + 3.60 + 3.05 + 7.10) °

0|

1/1.55 — 5.40 — 3.50 + 6.75 +
br = §< 2.45 — 3.60 — 3.05 + 7.10) - 0-28820.29
, L(I'SS — 5.40 + 3.50 — 6.75 — ) 0238 = 024
v 8 2.45 + 3.60 — 3.05 + 7.10 ' '

L 1(1.55 +5.40 — 3.50 — 6.75 —
8 2.45 — 3.60 + 3.05 + 7.10
| [~1.55 + 5.40 + 3.50 — 6.75 +

8( 2.45 — 3.60 — 3.05 + 7.10

) = 0.100 = 0.10

by = ) = 0.438 = 0.44

The coded equation for the response surface, therefore, is
R = 4.18 + 1.54X* + 0.92Y" — 0.122" +
0.29X*Y* — 0.24X* 7 + 0.1V" 2" + 044X Y 2*

(b) The important effects are the presence or absence of benzocaine
(X*) and the temperature (¥*), which leave us with

R = 4.18 + 1.54X + 0.92Y"
(a) The values for by, b, b), b, b, b, b, and b, in coded form are

bo=%(2+6+4+8+10+18—|—8+12)=8.5
=2+ 6-4+8-10+18— 8+ 12) = 25
b= 4(-2—6+4+8—10— 18 +8+12) = 0.5
b= (2—6—4—8+10+18+8+12) =35
by=§(2—6—4+8+10—18—8+12) = 05
b= 5(2—6+4—8—10+18—8+12) = 0.5
b= g(2+6-4-8-10—18+8+12)=—15
b= 5(-2+6+4—8+10—18 =8+ 12) = 0.5

The coded equation for the response surface, therefore, is
R =85+ 25X — 057V + 352 —
05XV + 05X 2 — 1.5V 2 — 05X V' 2*

(b) The important effects are the temperature (X*), the pressure (¥*),
and the interaction between the pressure and the residence time

(Y*Z*), which leave us with

235
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R=285+25X"+352"— 1.5V 2

(c) The mean response is an 8.6% yield for the three trials at the center
of the experimental design, with a standard deviation of 0.529%. A
95% confidence interval for the mean response is

0
p=X= ji = 8.60% * (4'303)%529 %) — §.60% + 1.31%

The average response for the eight trials in the experimental design
is given by 4, and is equal to 8.5; as this falls within the confidence
interval, there is no evidence, at @ = 0.05, of curvature in the data
and a first-order model is a reasonable choice.
(a) When considering the response in terms of AE, the values for 4,
by by by by by by and by, in coded form are
(37 45 + 31.70 + 32.10 + 27.20 +
39.85 + 32.85 + 35.00 + 32.15

< -37.45 + 31.70 — 32.10 + 27.20 —

0 —

) = 33.54

b, =

oo|>—a

) = -2.56
39.85 + 32.85 — 35.00 + 32.15

-37.45 — 31.70 + 32.10 + 27.20 —
39.85 — 32.85 + 35.00 + 32.15

-37.45 — 31.70 — 32.10 — 27.20 +
( 39.85 + 32.85 + 35. 00+32.15)

) =-1.92

oo|'—a

oo\»—A

(3745—3170—3210+2720+
39.85 — 32.85 — 35.00 + 32.15
<3 45 — 31.70 + 32.10 — 27.20 —

1
by = §

oo|—

39.85 + 32.85 — 35.00 + 32.15

) = 37.45 + 31.70 — 32.10 — 27.20 — )

1
8 39.85 — 32.85 + 35.00 + 32.15
1 (—37.45 +31.70 + 32.10 — 27.20 +

vz T §

= 0.41
39.85 — 32.85 — 35.00 + 32.15

The coded equation for the response surface, therefore, is
R = 33.54 — 2.56X* — 1.92Y* + 1.427° +
0.62X*Y* + 0.10X*Z* + 0.54YV° 2" + 041X YV 2*
(b) When considering the response in terms of samples per hour, the
values for by, b, b, b,, b, b5 by, and b, in coded form are
1 215+260+300+33.0+
b°_8< 21.0 + 19.5 + 30.0 + 34.0
_1(—215+260—300+330— ) 12

bx
8 21.0 + 19.5 — 30.0 + 34.0

) = 269
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1 -21.5 — 26.0 + 30.0 + 33.0 —

21.0 — 19.5 + 30.0 + 34.0

~21.5 — 26.0 — 30.0 — 33.0 + B

( 210+195+300+34.0)__08
21.5 — 26.0 — 30.0 + 33.0 +

b’“:8< 210—195—300+340) 0>

z

oo|—

1(21.5 = 26.0 + 30.0 — 33.0 —
éxz:7 :_06
8 21.0 + 19.5 — 30.0 + 34.0

1(21.5 +26.0 — 30.0 — 33.0 —
.= =1.0
8 21.0 — 19.5 + 30.0 + 34.0

p = 1(—21.5 + 26.0 + 30.0 — 33.0 + ) — 09
T8 21.0 = 19.5 = 30.0 + 34.0
The coded equation for the response surface, therefore, is
R =269+ 12X" +49Y" — 0.82" +
0.5X*Y — 0.6X*Z* + V2 + 09X V" 2*

(c) To help us compare the response surfaces, let’s gather the values
for each term into a table; thus

parameter AE sample/h

by 33.54 26.9
b, ~2.56 1.2
b, ~1.92 4.9
b, 1.42 0.8
by 0.62 0.5
b, 0.10 ~0.6
by, 0.54 1.0
by 0.41 0.9

Looking at the main effects (4,, b},, and b,), we see from the signs that
the parameters that favor a high sampling rate (a smaller volume of
sample, a shorter reactor length, and a faster carrier flow rate) result
in smaller values for AE; thus, the conditions that favor sensitivity do
not favor the sampling rate.

(d) One way to answer this question is to look at the original data
and see if for any individual experiment, the sensitivity and the sam-
pling rate both exceed their mean values as given by their respective
values for 4y: 33.54 for AE and 26.9 sample/h for the sampling rate.
Of the original experiments, this is the case only for run 7; thus, a
reactor length of 1.5 cm (X* = —1), a carrier flow rate of 2.2 mL/min

237
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sampling rate

T
28 30 32 34 36 38 40

sensitivity

Figure SM14.7 Plot of sampling rate vs.
sensitivity for the data in Problem 9. The
blue dots are the results for the experimen-
tal runs used to model the response surface,
the red square shows the mean sensitivity
and mean sampling rate for the experimen-
tal data, and the red line shows equal per-
centage changes in sensitivity and sampling
rate relative to their respective mean values.
See text for further details.

10.

(Y* = 41), and a sample volume of 150 puL provides the best com-
promise between sensitivity and sampling rate.

Another approach is to plot the sampling rate versus the sensitivity
for each experimental run, as shown in Figure SM14.7 where the
blue dots are the results for the eight experiments, the red square is
the average sensitivity and the average rate, and the red line shows
conditions that result in an equal percentage change in the sensitivity
and the sampling rate relative to their mean values. The best experi-
mental run is the one that lies closest to the red line and furthest to
the upper-right corner. Again, the seventh experiment provides the
best compromise between sampling rate and sensitivity.

(a) There are a total of 32 terms to calculate: one average (&), five
main effects (6, by, b,, b, and b,), 10 binary interactions (6, 6,
bp b, by by by b,y b, and b,,), 10 ternary interactions (&,
babd’ bﬂbe’ bacd’ bace’ bade’ éécd’ bbfe’ bbde’ and bcde)’ five quaternary
interactions (6.5 0,440 Oupder O aeder a0 b4,4,,), and one quinary inter-
action (6,,,,,). We will not show here the equations for all 32 terms;
instead, we provide the equation for one term in each set and sum-
marize the results in a table.

1 32 1 32 .
bo = 3—2;Ri bd = 3—2;1‘1; R
l < * % 1 & * E3 X
bab - ﬁ;Az B£ Ri bab; - 3_2;141 Bi CRz

J— 1 Z * % X * J— ]. S * % X £3 X
bﬂbm’ - T; Ai Bi C‘TD; Ri babm’e - ﬁ; Ai Bi CI*DI ERI

term value term value term value
b 049 b,  -0.008 b,  0.001
b, 0.050 &, 0.008 &, 0

b, 0071 b,  -0.021 b,  0.006
b, 0.039 b, 012 b,  0.025
b, 0.074 b, 0007 by,  0.006
b, 015 b, 0003 b, 0007
b, 0001 b, 0005 b,, 0004
b, 0007 b, -0.004 b,  0.009

b, 0013 b, 0003 b,  0.005
0.009 & 0.049 b, —0.14

ace

b, 0.014 b, 0019

If we ignore any term with an absolute value less than 0.03, then the
coded equation for the response surface is
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R = 0.49 + 0.504* — 0.071B* + 0.039C*
+ 0.074D* — 0.15E" — 0.12C"E* + 0.0494" C* E*

(b) The coded equation suggests that the most desirable values for
A* and for D* are positive as they appear only in terms with positive
coefhicients, and that the most desirable values for B* are negative as it
appears only in a term with a negative coeflicient. Because £* is held
at its high, or +1 level, the most desirable value for C* is negative as
this will make —0.12C*E* more positive than the term 0.049A4*C*E*
is negative. This is consistent with the results from the simplex op-
timization as the flow rate (4) of 2278 mL/min is greater than its
average factor level of 1421 mL/min (A4*), the amount of SiH, used
(B) 0£9.90 ppm is less than its average factor level of 16.1 ppm (B%),
the O, + N, flow rate (C) of 260.6 mL/min is greater its average
factor level C*) of 232.5 mL/min, and the O,/N, ratio (D) of 1.71 is
greater than its average factor level (D*) of 1.275.

Substituting in values of X; = 10 and X, = 0 gives a response of
519.7, or an absorbance of 0.520. Repeating using values of X; = 0
and X, = 10 gives a response of 637.5, or an absorbance of 0.638.
Finally, letting X; = 0 and X, = 0 gives a response of 835.9, or an
absorbance of 0.836.

These values are not reasonable as both H,O, and H,SOy are re-
quired reagents if the reaction is to develop color. Although the em-
pirical model works well within the limit 8 < X; < 22 and the limit
8 < X, < 22, we cannot extend the model outside this range without
introducing error.

The mean and the standard deviation for the 10 trials are 1.355 ppm
and 0.1183 ppm, respectively. The relative standard deviation of

_ 0.1183 ppm _
Srel — WX 100 = 8730/0
and the bias of
1.355 ppm — 1.30 ppm

1.30 ppm X 100 = 4.23%
are within the prescribed limits; thus, the single operator characteris-
tics are acceptable.

The following calculations show the effect of a change in each factor’s
level

_ 98.9 + 98.5 + 97.7 + 97.0
4

_ 98.8 +98.5 —4F 97.7 + 973 _ ~0.05

E,

This is, of course, the inherent danger of
extrapolation.
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Note that the results for analyst 8 remind
us that accuracy and precision are not re-
lated, and that it is possible for work to be
very precise and yet wholly inaccurate (or
very accurate and very imprecise).

14.

_ 989 + 985 + 98.8 + 98.5
Ey = Z

_97.7+97.0 44— 97.7 +97.3 _

1.25

98.9 + 97.7 +98.8 + 97.7
4

_ 98,5+ 97.0 +985+973 _
4

98.9 +98.5 +97.7 +97.3
4

_ 977 +97.0 %4- 98.8 +98.5 _ 0.10

E: =

0.45

Ep, =

g, = 289 T 97.7 1+ 985 + 97.3
£ 4

_ 985+ 97.0 Z 98.8 +97.7 _ (1o

B = 98.9 + 97.0 + 98.8 + 97.3
e 4

_ 985 +97.7 Z 98,5 +97.7 _ _0.10

E. = 9289 +97.0 +98.5 + 97.7
¢ 4

_ 9854977 +988 +97.3 _
4

-0.05

The only significant factors are pH (factor B) and the digestion time
(factor C). Both have a positive factor effect, which indicates that each
factor’s high level produces a more favorable recovery. The method’s
estimated standard deviation is

B \/;{(_0.05)2 + (125" + (0.45)° +
TTAT7] 01007 + (0.10)% + (=0.10)° + (=0.05)

[

(a) The most accurate analyst is the one whose results are closest to
the true mean values, which is indicated by the red star; thus, analyst
2 has the most accurate results.

(b) The most precise analyst is the one whose results are closest to the
diagonal line that represents no indeterminate error; thus, analyst 8
has the most precise results.

(c) The least accurate analyst is the one whose results are furthest from
the true mean values, which is indicated by the red star; thus, analyst
8 has the most accurate results.

(d) The least precise analyst is the one whose results are furthest from
the diagonal line that represents no indeterminate error; thus, ana-
lysts 1 and 10 have the least precise results.
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15. Figure SM14.8 shows the two sample plot where the mean for the

first sample is 1.38 and the mean for the second sample is 1.50. A
casual examination of the plot shows that six of the eight points are
in the (4,+) or the (—,—) quadrants and that the distribution of the
points is more elliptical than spherical; both suggest that systematic
errors are present.

To estimate values for 0,4 and for 0 sys WE first calculate the differ-
ences, D;, and the totals, 7, for each analyst; thus

analyst D, 7}
1 -0.22 2.92
2 0.02 2.68
3 —-0.13 2.81
4 —-0.10 3.10
5 -0.10 3.14
6 -0.13 2.91
7 -0.06 2.66
8 -0.21 2.85

To calculate the experimental standard deviations for the differences
and the totals, we use equation 14.18 and equation 14.20, respec-
tively, and are easy to calculate if first we find the regular standard
deviation and then we divide it by ﬁ ; thus

sp = 0.1232 57 = 0.0549

To determine if the systematic errors are significant, we us the follow-
ing null hypothesis and one-tailed alternative hypothesis

Hysr = sp Hasr>sp

Because the value of Fexp

_ (sp? _ (0.1232)*
Fop = (sp)>  (0.0549)* 5.04

exceeds the critical value of /(0.05,7,7) of 3.787; thus, we reject the
null hypothesis and accept the alternative hypothesis, finding evi-
dence at @ = 0.5 that systematic errors are present in the data. The

estimated precision for a single analyst is
Gmnd — S$p — 0-055

and the estimated standard deviation due to systematic differences
between the analysts is

_ Jor—0c5 _ /(0.1232)* — (0.0549)"

= 0.078
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Figure SM14.8 Two-sample plot for the
data in Problem 15. The blue dots are the
results for each analyst, the red square is
the average results for the two samples, the
dashed brown lines divide the plot into
four quadrants where the results for both
samples exceeds the mean (4,+), where
both samples are below the mean (—,-), and
where one sample is above the mean and
one below the mean, (+,-) and (—,+). The
solid green line shows results with identical
systematic errors.

Here we use a one-tailed alternative hy-
pothesis because we are interested only in
whether s7-is significantly greater than sp.
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Here we use a one-tailed alternative hy-
pothesis because we are interested only in

whether s, is significantly greater than s,,,.

Here we use a one-tailed alternative hy-
pothesis because we are interested only in
whether the result for one lab is greater
than the result for another lab.

16. (a) Foran analysis of variance, we begin by calculating the global mean

and the global variance for all 35 measurements using equation 14.22
and equation 14.23, respectively, obtaining values of X = 3.542
and s> = 1.989. Next, we calculate the mean value for each of the
seven labs, obtaining results of

X4s=240 Xz;=13.60 Xc=2.00

Xp =260 X:=480 Xr=5.00 X¢= 4.40

To calculate the variance within the labs and the variance between
the labs, we use the equations from Table 14.7; thus, the total sum-
of-squares is

SS, = F(N—1) = (1.989)(35 — 1) = 67.626
and the between lab sum-of-squares is

b —
SS, = Zni(x — X)* = (5)(2.40 — 3.542)"

+ (5)(3.60 — 3.542)* + (5)(2.00 — 3.542)°
+ (5)(2.60 — 3.542)* + (5)(4.80 — 3.542)°
+ (5)(5.00 — 3.542)" + (5)(4.40 — 3.542)" = 45.086

and the within lab sum-of-squares is
SS., = S5, — S§S, = 67.626 — 45.086 = 22.540

The between lab variance, s;, and the within lab variance, s, , are

i = th”l = 4759816 = 7.514

S8, _ 22.540
N—»h 35—7
To determine if there is evidence that the differences between the labs
is significant, we use an F-test of the following hull hypothesis and
one-tailed alternative hypothesis

Hys; = s, Has, > s,

. = 0.805

s

Because the value of F

exp
_ 5 _ (7514)° _
b =0 = (0.805)* 87.13

exceeds the critical value for 7(0.05,6,28), which is between 2.099
and 2.599, we reject the null hypothesis and accept the alternative
hypothesis, finding evidence at @ = 0.5 that there are systematic dif-
ferences between the results of the seven labs.

To evaluate the source(s) of this systematic difference, we use equa-
tion 14.27 to calculate 7, for the difference between mean values,

comparing 7., to a critical value of 1.705 for a one-tailed #test with
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28 degrees of freedom. For example, when comparing lab A to lab C,
the two labs with the smallest mean values, we find

t — |7A_7C|X nAnC —
op \/?i V ns + ne

|2.40 — 2.00 | %5 _
70,805 ><4/SJFS = 0.705

no evidence for a systematic difference at @ = 0.05 between lab A and
lab C. The table below summarizes results for all seven labs

lab C A D B G E F
X 2.00 240 2.60 3.60 4.40 4.80 5.00

fop 0705 1.762 0.705

0.352 1.410 0.352
|

S —

where there is no evidence of a significant difference between the re-
sults for labs C, A, and D (as shown by the green bar), where there is
no evidence of a significant difference between the results for labs G,
E, and F (as shown by the blue bar), and where there is no significant
difference between the results for labs B and G (as shown by the red

bar).
(b) The estimated values for 0.4 and for 03, are
dfﬂnd = Xﬁ, = 0.805

5t = 5 Ot _ 7514 = 0.805 _ 4 34
n

First, let’s write out the three sum-of-squares terms that appear in
equation 14.23 (85,), equation 14.24 (S5,,), and equation 14.25 (8S,)

SS. = ii(X; —-X)’

i=1 j=1

b ni
S, =2 (X — X)?

=1 j=1
h —
88y = > m(X: — X)*

so that we have them in front of us. Looking at the equation for SS,,
let’s pull out the term within the parentheses,

Xj_?

and then subtract and add the term X to it, grouping together parts
of the equation using parentheses

(X, —X)=(X,— X) + (X, — X)

Note that the labs are organized from the
lab with the smallest mean value (lab C)
to the lab with the largest mean value (lab
F) and that we compare mean values for
adjacent labs only.
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Note that this is not the case for the first
two terms in this expanded equation for
88, because these terms sum up the squares
of the differences, which always are posi-
tive, not the differences themselves, which
are both positive and negative.

18.

Next, let’s square both sides of the equation
(X‘/ - ?)2 - {(X] - Y;) + (Y; - ?)}2

(X, =XV =(X—-X)P+ (X —X)+2(X,— X)X — X)

and then substitute the right side of this equation back into the sum-
mation term for SS,

55, = 33X, — Xy + (X — XY + 2(X, - X)X — X))

=1 j=1
and expand the summation across the terms in the curly parentheses

b L
SS, = ZZ(XZJ - X.)

+ZZ (X, —
Z;(X-, - X)X —X)

><H

The last of these terms is equal to zero because this always is the result
when you sum up the difference between a mean and the values that
give the mean; thus, we now have this simpler equation

55, = (X~ Xy + 3K~ X)

i=1 j=1 i=1 j=1

Finally, we note that
h

YI(X - =2 (X,

=1 j=1 i=

5\\

because, for each of the 4 samples, the inner summation term simply

Ve <7 \2 . . .
adds together the term (X; — X)) a total of 7, times. Substituting
this back into our equation for SS, gives

b ni h J—
SS, — ZZ(X] - 71‘)2 + Zﬂi(yz' - Y)z

i=1 j=1

which is equivalent to §§, = 8§, + SS,.

(a) Using equation 14.28, our estimate for the relative standard devi-
ation is

R — 2(1*0.5]0g0 — 2(]*0.5]og(040026)) — 4.90/0

(b) The mean and the standard deviation for the data set are
0.257%w/w and 0.0164%w/w respectively. The experimental per-
cent relative standard deviation, therefore, is

s = 0.0164%w/w
g 0.257%w/w

Because this value is within the range of 0.5 to 2.0x of R, the vari-
ability in the individual results is reasonable.

X 100 = 6.4%



