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Chapter 5
Many of the problems in this chapter require a regression analysis. Al-
though equations for these calculations are highlighted in the solution to 
the first such problem, for the remaining problems, both here and elsewhere 
in this text, the results of a regression analysis simply are provided. Be sure 
you have access to a scientific calculator, a spreadsheet program, such as 
Excel, or a statistical software program, such as R, and that you know how 
to use it to complete a regression analysis.
1.	 For each step in a dilution, the concentration of the new solution, 

Cnew, is 
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	 where Corig is the concentration of the original solution, Vorig is the 
volume of the original solution taken, and Vnew is the volume to 
which the original solution is diluted. A propagation of uncertainty 
for Cnew shows that its relative uncertainty is
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	 For example, if we dilute 10.00 mL of the 0.1000 M stock solution 
to 100.0 mL, Cnew is 1.000×10–2 M and the relative uncertainty in 
Cnew is

.

.
.
.

.
. .C

u
0 1000
0 0002

10 00
0 02

100 0
0 08 2 94 10

new

C 2 2 2
3new #= + + = -` ` `j j j

	 The absolute uncertainty in Cnew, therefore, is

( . ) ( . ) .u 1 000 10 2 94 10 2 94 10M MC
2 3 5

new # # # #= =- - -

	 The relative and the absolute uncertainties for each solution’s con-
centration are gathered together in the tables that follow (all con-
centrations are given in mol/L and all volumes are given in mL). The 
uncertainties in the volumetric glassware are from Table 4.2 and Table 
4.3. For a Vorig of 0.100 mL and of 0.0100 mL, the uncertainties are 
those for a 10–100 µL digital pipet.

	 For a serial dilution, each step uses a 10.00 mL volumetric pipet and 
a 100.0 mL volumetric flask; thus

Cnew Corig Vorig Vnew uVorig uVnew

1.000×10–2 0.1000 10.00 100.0 0.02 0.08

1.000×10–3 1.000×10–2 10.00 100.0 0.02 0.08

1.000×10–4 1.000×10–3 10.00 100.0 0.02 0.08

1.000×10–5 1.000×10–4 10.00 100.0 0.02 0.08

See Chapter 4C to review the propagation 
of uncertainty.
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Cnew Corig C
u

new

Cnew uCnew

1.000×10–2 0.1000 2.94×10–3 2.94×10–5

1.000×10–3 1.000×10–2 3.64×10–3 3.64×10–6

1.000×10–4 1.000×10–3 4.23×10–3 4.23×10–7

1.000×10–5 1.000×10–4 4.75×10–3 4.75×10–8

	 For the set of one-step dilutions using the original stock solution, 
each solution requires a different volumetric pipet; thus  

Cnew Corig Vorig Vnew uVorig uVnew

1.000×10–2 0.1000 10.00 100.0 0.02 0.08

1.000×10–3 0.1000 1.000 100.0 0.006 0.08

1.000×10–4 0.1000 0.100 100.0 8.00×10–4 0.08

1.000×10–5 0.1000 0.0100 100.0 3.00×10–4 0.08

Cnew Corig C
u

new

Cnew uCnew

1.000×10–2 0.1000 2.94×10–3 2.94×10–5

1.000×10–3 0.1000 6.37×10–3 6.37×10–6

1.000×10–4 0.1000 8.28×10–3 8.28×10–7

1.000×10–5 0.1000 3.01×10–2 3.01×10–7

	 Note that for each Cnew, the absolute uncertainty when using a serial 
dilution always is equal to or better than the absolute uncertainty 
when using a single dilution of the original stock solution. More 
specifically, for a Cnew of 1.000×10–3 M and of 1.000×10–4 M, the 
improvement in the absolute uncertainty is approximately a factor 
of 2, and for a Cnew of 1.000×10–5 M, the improvement in the ab-
solute uncertainty is approximately a factor of 6. This is a distinct 
advantage of a serial dilution. On the other hand, for a serial dilution 
a determinate error in the preparation of the 1.000×10–2 M solution 
carries over as a determinate error in each successive solution, which 
is a distinct disadvantage.

2.	 We begin by determining the value for kA in the equation

S k C Stotal A A reag= +

	 where Stotal is the average of the three signals for the standard of con-
centration CA, and Sreag is the signal for the reagent blank. Making 
appropriate substitutions 

. ( . ) .k0 1603 10 0 0 002ppmA= +
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	 and solving for kA gives its value as 0.01583 ppm–1. Substituting in 
the signal for the sample

. ( . ) .C0 118 0 01583 0 002ppm A
1= +-

	 and solving for CA gives the analyte’s concentration as 7.33 ppm.
3.	 This standard addition follows the format of equation 5.9
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	 in which both the sample and the standard addition are diluted to the 
same final volume. Making appropriate substitutions
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	 and solving gives the analyte’s concentration, CA, as 0.800 ppm. The 
concentration of analyte in the original solid sample is
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4.	 This standard addition follows the format of equation 5.11
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	 in which the standard addition is made directly to the solution that 
contains the analyte. Making appropriate substitutions
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. . .C C23 1 11 27 2 255 ppmA A= +

	 and solving gives the analyte’s concentration, CA, as 0.191 ppm.
5.	 To derive a standard additions calibration curve using equation 5.10

S k C V V
V C V V

V
spike A A

o std

o
std

o std

std= + + +a k
	 we multiply through both sides of the equation by Vo + Vstd

( )S V V k C V k C Vspike o std A A o A std std+ = +

	 As shown in Figure SM5.1, the slope is equal to kA and the y-inter-
cept is equal to kACAVo. The x-intercept occurs when Sspike(Vo + Vstd) 
equals zero; thus 

k C V k C V0 A A o A std std= +
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Figure SM5.1 Standard additions calibra-
tion curve based on equation 5.10.

Here we assume that a part per million is 
equivalent to mg/L.
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	 and the x-intercept is equal to –CAVo. We must plot the calibra-
tion curve this way because if we plot Sspike on the y-axis versus 

/ ( )C V V Vstd std o std# +" ,  on the x-axis, then the term we identify as 
y-intercept

V V
k C V

o std

A A o

+

	 is not a constant because it includes a variable,Vstd, whose value 
changes with each standard addition.

6.	 Because the concentration of the internal standard is maintained at a 
constant level for both the sample and the standard, we can fold the 
internal standard’s concentration into the proportionality constant K 
in equation 5.12; thus, using SA, SIS, and CA for the standard

.

. ( . )S
S

k C
k C KC K0 233

0 155 10 00 mg/L
IS

A

IS IS

A A
A= = = =

	 gives K as 0.06652 L/mg. Substituting in SA, SIS, and K for the sample

.

. ( . )C0 233
0 155 0 06652 L/mg A=

	 gives the concentration of analyte in the sample as 20.8 mg/L.
7.	 For each pair of calibration curves, we seek to find the calibration 

curve that yields the smallest uncertainty as expressed in the standard 
deviation about the regression, sr, the standard deviation in the slope, 
sb1 , or the standard deviation in the y-intercept, sb0 .

	 (a) The calibration curve on the right is the better choice because it 
uses more standards. All else being equal, the larger the value of n, the 
smaller the value for sr in equation 5.19, and for sb0 in equation 5.21.

	 (b) The calibration curve on the left is the better choice because the 
standards are more evenly spaced, which minimizes the term xi

2/  
in equation 5.21 for sb0 .

	 (c) The calibration curve on the left is the better choice because the 
standards span a wider range of concentrations, which minimizes the 
term ( )x Xi

2-/  in equation 5.20 and in equation 5.21 for sb1  and 
sb0 , respectively.

8.	 To determine the slope and the y-intercept for the calibration curve 
at a pH of 4.6 we first need to calculate the summation terms that 
appear in equation 5.17 and in equation 5.18; these are:
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	 Substituting these values into the equation 5.17

( . ) ( . )
( . ) ( . . ) .b 6 19339 6 308 4
6 8397 5 308 4 131 0 0 4771 2#
# #

=
-

-
=

As a reminder, for this problem we will 
work through the details of an unweight-
ed linear regression calculation using the 
equations from the text. For the remain-
ing problems, it is assumed you have 
access to a calculator, a spreadsheet, or a 
statistical program that can handle most 
or all of the relevant calculations for an 
unweighted linear regression.
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	 gives the slope as 0.477 nA/nM, and substituting into equation 5.18
. ( . . ) .b 6

131 0 0 477 308 4 2 690
#

=
-

=-

	 gives the y-intercept as –2.69 nA. The equation for the calibration 
curve is

. .S C0 477 2 69nA/nM nAtotal Cd#= -

	 Figure SM5.2 shows the calibration data and the calibration curve.
	 To find the confidence intervals for the slope and for the y-intercept, 

we use equation 5.19 to calculate the standard deviation about the 
regression, sr, and use equation 5.20 and equation 5.21 to calculate 
the standard deviation in the slope, sb1 , and the standard deviation in 
the y-intercept, sb0 , respectively. To calculate sr we first calculate the 
predicted values for the signal, yi

V , using the known concentrations 
of Cd2+ and the regression equation, and the squared residual errors, 
( )y yi i

2-V ; the table below summarizes these results

xi yi yi
V ( )y yi i

2-V
15.4 4.8 4.66 0.0203
30.4 11.4 11.81 0.7115
44.9 18.2 18.73 0.2382
59.0 26.6 25.46 1.3012
72.7 32.3 32.00 0.0926
86.0 37.7 38.34 0.4110

	 Adding together the last column, which equals 2.2798, gives the nu-
merator for equation 5.19; thus, the standard deviation about the 
regression is

. .s 6 2
2 2798 0 7550r = -

=

	 To calculate the standard deviations in the slope and in the y-inter-
cept, we use equation 5.20 and equation 5.21, respectively, using the 
standard deviation about the regression and the summation terms 
outlined earlier; thus

( . ) ( . )
( . ) .s 6 19339 6 308 4

6 0 7550 0 02278b 2

2

1 #
#

=
-

=

( . ) ( . )
( . ) . .s 6 19339 6 308 4
0 7550 19339 6 0 7258b 2

2

0 #
#

=
-

=

	 With four degrees of freedom, the confidence intervals for the slope 
and the y-intercept are
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Figure SM5.2 Calibration curve at pH 4.6 
for the data in Problem 5.8.
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. ( . ) ( . )
. .

b ts 2 69 2 776 0 7258
2 69 2 01 nA

b1 0 0! !

!

b = =-

=-

	 (b) The table below shows the residual errors for each concentra-
tion of Cd2+. A plot of the residual errors (Figure SM5.3) shows no 
discernible trend that might cause us to question the validity of the 
calibration equation.  

xi yi yi
V y yi i-V

15.4 4.8 4.66 0.14
30.4 11.4 11.81 –0.41
44.9 18.2 18.73 –0.53
59.0 26.6 25.46 1.14
72.7 32.3 32.00 0.30
86.0 37.7 38.34 –0.64

	 (c) A regression analysis for the data at a pH of 3.7 gives the calibra-
tion curve’s equation as

. .S C1 43 5 02nA/nM nAtotal Cd#= -

	 The more sensitive the method, the steeper the slope of the cali-
bration curve, which, as shown in Figure SM5.4, is the case for the 
calibration curve at pH 3.7. The relative sensitivities for the two pHs 
is the ratio of their respective slopes
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0 477
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4 6

3 7

pH

pH
= =

	 The sensitivity at a pH of 3.7, therefore, is three times more sensitive 
than that at a pH of 4.6.

	 (d) Using the calibration curve at a pH of 3.7, the concentration of 
Cd2+ in the sample is

[ ] .
. ( . ) .b

S b nA
1 43

66 3 5 02 49 9Cd nA/nM
nA nMtotal2

1

0= - =
- -

=+

	 To calculate the 95% confidence interval, we first use equation 5.25
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	 to determine the standard deviation in the concentration where the 
number of samples, m, is one, the number of standards, n, is six, the 
standard deviation about the regression, sr, is 2.826, the slope, b1, is 
1.43, the average signal for the one sample, S samp , is 66.3, and the av-
erage signal for the six standards, S std , is 68.7. At first glance, the term 

( )C Cstd std
2

i-/ , where Cstdi  is the concentration of the ith stan-
dard and C std  is the average concentration for the n standards, seems 
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Figure SM5.3 Plot of the residual errors 
for the calibration standards in Problem 
5.8 at a pH of 4.6.
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Figure SM5.4 Calibration curves for the 
data in Problem 5.8 at a pH of 3.7 and at 
a pH of 4.6.
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cumbersome to calculate. We can simplify the calculation, however, 
by recognizing that ( )C Cstd std

2
i-/  is the numerator in the equa-

tion that gives the standard deviation for the concentrations of the 
standards, sCd. Because sCd is easy to determine using a calculator, a 
spreadsheet, or a statistical software program, it is easy to calculate 

( )C Cstd std
2

i-/ ; thus

( )) ( ) ( ) ( ) ( .C C n s 34871 6 1 26 41std
i

n

std Cd
1

22 2
i- == - = -

=

/
	 Substituting all terms back into equation 5.25 gives the standard de-

viation in the concentration as

( ) ( )
. .

.
.

. .s 1 1
3487

66 3 68 7
1 43
2 826

1 6 1 43 2 14C 2

2

Cd = + +
-

=
^ h

	 The 95% confidence interval for the sample’s concentration, there-
fore, is

. ( . ) ( . ) . .49 9 2 776 2 14 49 9 5 9 nMCd ! !n = =

9.	 The standard addition for this problem follows equation 5.10, which, 
as we saw in Problem 5.5, is best treated by plotting Sspike(Vo + Vstd) 
on the y-axis vs. CsVs on the x-axis, the values for which are

Vstd (mL) Sspike (arb. units) Sspike(Vo + Vstd) CstdVstd

0.00 0.119 0.595 0.0
0.10 0.231 1.178 60.0
0.20 0.339 1.763 120.0
0.30 0.442 2.343 180.0

	 Figure SM5.5 shows the resulting calibration curve for which the 
calibration equation is

( ) . .S V V C V0 5955 0 009713spike o std std std#+ = +

	 To find the analyte’s concentration, CA, we use the absolute value of 
the x-intercept, –CAVo, which is equivalent to the y-intercept divided 
by the slope; thus

( . ) .
. .C V C k

b5 00 0 009713
0 5955 61 31mLA o A

A

0= = = =

	 which gives CA as 12.3 ppb.
	 To find the 95% confidence interval for CA, we use a modified form 

of  equation 5.25 to calculate the standard deviation in the x-intercept

( ) ( )

( )s b
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n b C V C V
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C V
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	 where the number of standards, n, is four, the standard deviation 
about the regression, sr, is 0.00155, the slope, b1, is 0.009713, the 
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Figure SM5.5 Standard additions calibra-
tion curve for Problem 5.9.
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average signal for the four standards, ( )S V Vspike o std+ , is 1.47, and the 
term ( )C V C Vstd std std std

2
i i-/  is 1.80×104. Substituting back into 

this equation gives the standard deviation of the x-intercept as

.
.

( . ) ( . )
. .s 0 009713

0 00155
4
1

0 009713 1 8 10
1 47 0 197C V 2 4

2

A o #
= + =

" ,

	 Dividing sC VA o  by Vo gives the standard deviation in the concentra-
tion, sCA , as

.
. .s V

s
5 00
0 197 0 0393C

o

C V
A

A o= = =

	 The 95% confidence interval for the sample’s concentration, there-
fore, is

. ( . ) ( . ) . .12 3 4 303 0 0393 12 3 0 2 ppb! !n= =

10.	 (a) For an internal standardization, the calibration curve places the 
signal ratio, SA/SIS, on the y-axis and the concentration ratio, CA/CIS, 
on the x-axis. Figure SM5.6 shows the resulting calibration curve, 
which is characterized by the following values

		  slope (b1): 0.5576
		  y-intercept (b0): 0.3037
		  standard deviation for slope ( sb1 ): 0.0314
		  standard deviation for y-intercept ( sb0 ): 0.0781
	 Based on these values, the 95% confidence intervals for the slope and 

the y-intercept are, respectively

. ( . ) ( . ) . .b ts 0 3037 3 182 0 0781 0 3037 0 2484b0 0 0 ! !!b = = =

. ( . ) ( . ) ..b ts 0 5576 3 182 0 0314 0 10010 5576b1 1 1! ! !b = = =

	 (b) The authors concluded that the calibration model is inappropriate 
because the 95% confidence interval for the y-intercept does not in-
clude the expected value of 0.00. A close observation of Figure SM5.6 
shows that the calibration curve has a subtle, but distinct curvature, 
which suggests that a straight-line is not a suitable model for this data.

11.	 Figure SM5.7 shows a plot of the measured values on the y-axis and 
the expected values on the x-axis, along with the regression line, which 
is characterized by the following values:

		  slope (b1): 0.9996
		  y-intercept (b0): 0.000761
		  standard deviation for slope ( sb1 ): 0.00116
		  standard deviation for y-intercept ( sb0 ): 0.00112
	 For the y-intercept, texp is
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Figure SM5.6 Internal standards calibra-
tion curve for the data in Problem 5.10.
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Figure SM5.7 Plot of the measured absor-
bance values for a series of spectrophoto-
metric standards versus their expected ab-
sorbance values. The original data is from 
Problem 4.25. 
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.
. . .t s

b
0 00112

0 00 0 00761 0 679exp
b

0 0

0

b
=

-
=

-
=

	 and texp for the slope is

.
. . .t s

b
0 00116

1 00 0 9996 0 345exp
b

1 1

1

b
=

-
=

-
=

	 For both the y-intercept and the slope, texp is less than the critical 
value of t(0.05,3), which is 3.182; thus, we retain the null hypothesis 
and have no evidence at a = 0.05 that the y-intercept or the slope dif-
fer significantly from their expected values of zero, and, therefore, no 
evidence at a = 0.05 that there is a difference between the measured 
absorbance values and the expected absorbance values. 

12.	 (a) Knowing that all three data sets have identical regression statistics 
suggests that the three data sets are similar to each other. A close look 
at the values of y suggests that all three data sets show a general in-
crease in the value of y as the value of x becomes larger, although the 
trend seems noisy.

	 (b) The results of a regression analysis are gathered here

parameter Data Set 1 Data Set 2 Data Set 3
b0 3.0001 3.0010 3.0025
b1 0.5001 0.5000 0.4997
sb0 1.1247 1.1250 1.1245
sb1 0.1179 0.1180 0.1179
sr 1.237 1.237 1.236

	 and are in agreement with the values reported in part (a). Figure 
SM5.8 shows the residual plots for all three data sets. For the first data 
set, the residual errors are scattered at random around a residual error 
of zero and show no particular trend, suggesting that the regression 
model provides a reasonable explanation for the data. For data set 2 
and for data set 3, the clear pattern to the residual errors indicates that 
neither regression models is appropriate.

	 (c) Figure SM5.9 shows each data set with its regression line. For data 
set 1, the regression line provides a good fit to what is rather noisy 
data. For the second data set, we see that the relationship between x 
and y is not a straight-line and that a quadratic model likely is more 
appropriate. With the exception of an apparent outlier, data set 3 is a 
straight-line; removing the outlier is likely to improve the regression 
analysis.

	 (d) The apparent outlier is the third point in the data set (x = 13.00, 
y = 12.74). Figure SM5.10 shows the resulting regression line, for 
which
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Figure SM5.8 Residual plots for (a) data 
set 1; (b) data set 2; and (c) data set 3. 
The dashed line in each plot shows the ex-
pected trend for the residual errors when 
the regression model provides a good fit to 
the data.
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		  y-intercept (b0): 4.01
		  standard deviation for slope ( sb1 ): 0.00321
		  standard deviation for y-intercept ( sb0 ): 0.00292
		  standard deviation about the regression (sr): 0.00308
	 Note that sr, sb0 , and sb1  are much smaller after we remove the ap-

parent outlier, which is consistent with the better fit of the regression 
line to the data.

	 (e) The analysis of this data set drives home the importance of exam-
ining your data in a graphical form. As suggested earlier in the answer 
to part (a), it is difficult to see the underlying pattern in a data set 
when we look at numbers only.

13.	 To complete a weighted linear regression we first must determine the 
weighting factors for each concentration of thallium; thus

xi yi (avg) s yi ( )s y
2

i
- wi

0.000 2.626 0.1137 77.3533 3.3397
0.387 8.160 0.2969 11.3443 0.4898
1.851 29.114 0.5566 3.2279 0.1394
5.734 85.714 1.1768 0.7221 0.0312

	 where yi (avg) is the average of the seven replicate measurements for 
each of the i standard additions, and s yi  is the standard deviation for 
these replicate measurements; note that the increase in s yi  with larger 
values of xi indicates that the indeterminate errors affecting the signal 
are not independent of the concentration of thallium, which is why a 
weighted linear regression is used here. The weights in the last column 
are calculated using equation 5.28 and, as expected, the sum of the 
weights is equal to the number of standards.

	 To calculate the y-intercept and the slope, we use equation 5.26 and 
equation 5.27, respectively, using the table below to organize the var-
ious summations

xi yi (avg) wixi wiyi w xi i
2 wixiyi

0.000 2.626 0.0000 8.7701 0.0000 0.0000
0.387 8.160 0.1896 3.9968 0.0734 1.5467
1.851 29.114 0.2580 4.0585 0.4776 7.5123
5.734 85.714 0.1789 2.6743 1.0258 15.3343

totals 0.6265 19.4997 1.5768 24.3933
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Figure SM5.9 Regression plots for the data 
from (a) data set 1; (b) data set 2; and (c) 
data set 3.
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Figure SM5.10 Regression plot for data set 
3 after removing the apparent outlier.
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	 The calibration curve, therefore, is
. ( . )S C2 61 14 43µA µA/ppmtotal Tl#= +

	 Figure SM5.11 shows the calibration data and the weighted linear 
regression line. 

Figure SM5.11 Calibration data and cali-
bration curve for the data in Problem 5.13. 
The individual points show the average sig-
nal for each standard and the calibration 
curve is from a weighted linear regression. 
The blue tick marks along the y-axis show 
the replicate signals for each standard; note 
that the spacing of these marks reflect the 
increased magnitude of the signal’s indeter-
minate error for higher concentrations of 
thallium.
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