HiveR: 2D & 3D Hive Plots + Hive Panels

New Tools for Network Visualization

Bryan A. Hanson
DePauw University
Dept of Chemistry & Biochemistry
Greencastle Indiana USA

e-mail: hanson@depauw.edu
github.com/bryanhanson/HiveR
CRAN.R-project.org/package=HiveR

Special Thanks to
Martin Krzywinski!

useR!

Powered by knitr
Inspiration & Motivation

Developed by Martin Krzywinski at the Genome Sciences Center (www.hiveplot.com)

- "Hairball" style networks ≠ reproducible research
- Hive Plots use a node coordinate system

Application Areas

- Ecology: food webs
- Social networks
- Systems biology: protein-protein interactions, gene regulatory networks, genomic architecture
- Biochemistry: metabolic pathways
- Computer science
- In the spirit of Cleveland & Tufte...
Characteristics of Hive Plots

- Hive Plots are transparent:
 - Hive Plots are **Rational**: the layout is determined only by the structural properties of the network (no algorithm)
 - Hive Plots are **Predictable & Reproducible**: network features are mapped to plot features
 - Hive Plots are **Robust** to changes in the network

- Hive Plots are practical:
 - Hive Plots are **Flexible** & can be tuned to show interesting features
 - **Complexity Scales Well** in a Hive Plot & details can be inspected
 - Hive Plots of different **Networks can be Directly Compared**

- Most powerful with large networks, where hidden patterns emerge
Early Implementation: FuncMap

December 2010

- Function calls in R packages are divided into 3 types:
 - Sources, which are functions that only call other functions
 - Sinks, which are functions that only get called
 - Managers, which do both
 - Info from foodweb in package mvbutils

- Mapping:
 - Functions in a package are assigned to an axis by their role
 - Radius is determined by the number of calls made or received by a function
 - Width of the edges is determined the same way
Early Implementation: FuncMap

lattice

ggplot2
What Exactly is HiveR?

- HiveR is an implementation of Hive Plots in R, not a port of the original Perl prototype
- There are also versions in Java & D3 by others
- Value added: 3D plots were inspired by the ideas of VSEPR theory in chemistry (more later)

![Diagram of tetrahedral, trigonal bipyramidal, and octahedral geometries with axes labeled 1, 2, 3, 4, 5, 6. Bold lines come toward you, dotted lines move away. Numbers give the order the axes are drawn in HiveR. For tetrahedral and octahedral geometries, all axes are equivalent. For the trigonal bipyramidal geometry, axes 1-3 are called equatorial, and axes 4 & 5 are called apical.]
Hive Plot Features Which Can Be Mapped

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis to which a node is assigned</td>
</tr>
<tr>
<td>Radius of a node</td>
</tr>
<tr>
<td>Color of a node</td>
</tr>
<tr>
<td>Size of a node</td>
</tr>
<tr>
<td>Color of an edge</td>
</tr>
<tr>
<td>Width of an edge</td>
</tr>
</tbody>
</table>

- Node assignment can be based upon qualitative or quantitative characteristics:
 - **1st & hardest task:** no jumping or crossing axes allowed
- Mapping is limited only by one’s creativity & the particular knowledge domain
- Mapping can be readily tuned
- Mapping network parameters in this way results in a reproducible plot
Hive Plots: Axis Units/Scaling Options

After assignment, the 2nd aspect of the node coordinate system

<table>
<thead>
<tr>
<th>method</th>
<th>axis length</th>
<th>center hole</th>
<th>node behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>native</td>
<td>$f(node\ units)$</td>
<td>asymmetric</td>
<td>nodes may overlap</td>
</tr>
<tr>
<td>ranked</td>
<td>$\propto rank(nodes)$</td>
<td>circular</td>
<td>nodes evenly spaced & don’t overlap</td>
</tr>
<tr>
<td>normed</td>
<td>all equal</td>
<td>circular</td>
<td>nodes may overlap</td>
</tr>
<tr>
<td>ranked & normed</td>
<td>all equal</td>
<td>circular</td>
<td>nodes evenly spaced & don’t overlap</td>
</tr>
</tbody>
</table>
HiveR Utilities

- Generation of random networks (ranHiveData)
- Import data (dot2HPD, adj2HPD)
- Extract embedded information (mineHPD)
 - node degree → node radius
 - node role (source, manager, sink) → node axis
 - delete orphaned nodes, zero-length edges
- Scale or invert an axis (manipAxis)
- Check integrity of the HPD (chkHPD)
- Summarize HPD (sumHPD)
 - Find orphaned nodes
 - Check for edges that jump axes
 - Check for edges that start & end on the same axis
 - Report a list of edges to be drawn
A Simple Example Using a Plant-Pollinator Network

- Data set Safariland\(^1\) from package bipartite
- Describes plant-pollinator pairs & the number of visits during a fixed observation period
- Observations at several different habitats/sites
- Two sites have been converted to HPD format:
 - Safari from an undisturbed area
 - Arroyo from an area grazed by cattle

Plant-Pollinator Network:
Function visweb in Package bipartite
Plant-Pollinator Network: Function `gplot` in Package `sna`

Plant nodes green, insect nodes red, mode = `circle`
Plant-Pollinator Network: Function `gplot` in Package `sna`

Plant nodes green, insect nodes red, mode = `fruchtermanreingold`
Plant-Pollinator Network: 2D Hive Plot

- Plants vs. pollinators
- Node radius is $|d'|$
- Edge weights are $\propto \sqrt{\text{no. visits}}$
- Edge colors like weights; redder $=$ more visits
Safari (undisturbed) vs. Arroyo (grazed): Hive Panel
The degree of specialization in each network is different

A greater number of visits (wider, redder edges) occur between more specialized species (nodes at larger radii) in Safari than Arroyo

Plants in Arroyo have a larger range of specialization: the plant axis is longer

The huge number of visits encoded in red in Safari (the ungrazed site) is missing in Arroyo, which was an interesting finding in the study

Note that deleting nodes & edges does not affect those remaining
Nuances of Hive Plots

- Hive Plots are radially-arranged parallel coordinate plots
- Assigning the nodes is the most time-consuming task (no jumping/crossing of axes)
- Nodes cannot be assigned w/o thinking about the edges as well (next slide)
- Not all data sets can be made into Hive Plots
- Hive Plots are directionally agnostic. Almost.
- If drawn using native or normed coordinates, nodes may overlap. The nodes ”on top” & showing are the last drawn nodes. You may wish to sort the nodes before drawing to get a certain effect – the same is true for edges
- Only deals with one network at a time
2D Hive Plots
- With 2 or 3 axes, edges cannot jump axes. For 4+ axes, you must guard against this:
 - Edges should go $1 \rightarrow 2$, $2 \rightarrow 3$, \ldots, $5 \rightarrow 6$, but not $1 \rightarrow 5$

3D Hive Plots
- No edges can start & end on the same axis
- For 5 or 6 axes, edges may not start on one axis & end on a co-linear axis
- For 4 axes, edges cannot jump axes. For 5 or 6 axes, you must guard against this.
A More Complex Example:
E. coli Gene Regulatory Network

- Raw data is composed of genes that regulate each other via transcription factors
- Steps to Create a Hive Plot:
 1. Using `dot2HPD` & helper files, create the initial HPD
 2. Edges colored by role (activator, repressor, dual) during import
 3. Assign node radius based upon degree
 4. Assign axis based upon source, sink, manager role
 5. Remove zero-length edges
 6. Sort edges

Yan et. al. PNAS vol 107 pg 9186 (2010), based upon RegulonDB
E. coli Network: Sample Dot File

Only a very small portion of the Dot standard is followed at this time

```plaintext
## [1] "zrar [label=nonpersistent];"
## [2] "zras [label=nonpersistent];"
## [3] "zwf [label=nonpersistent];"
## [4] "arca -- phantom_gene [type=0];"
## [5] "crp -- phantom_gene [type=0];"
## [6] "fnr -- phantom_gene [type=0];"
## [7] "fur -- phantom_gene [type=0];"
## [8] "arca -- acea [type=1];"
## [9] "crp -- acea [type=0];"
```
Importing Dot Files: Sample Mapping Instructions

Node Mapping Instructions

<table>
<thead>
<tr>
<th>dot.tag</th>
<th>dot.val</th>
<th>hive.tag</th>
<th>hive.val</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>persistent</td>
<td>color</td>
<td>red</td>
</tr>
<tr>
<td>label</td>
<td>nonpersistent</td>
<td>color</td>
<td>black</td>
</tr>
</tbody>
</table>

Edge Mapping Instructions (used in next example)

<table>
<thead>
<tr>
<th>dot.tag</th>
<th>dot.val</th>
<th>hive.tag</th>
<th>hive.val</th>
</tr>
</thead>
<tbody>
<tr>
<td>interaction</td>
<td>repressor</td>
<td>color</td>
<td>red</td>
</tr>
<tr>
<td>interaction</td>
<td>activator</td>
<td>color</td>
<td>green</td>
</tr>
<tr>
<td>interaction</td>
<td>dual</td>
<td>color</td>
<td>orange</td>
</tr>
</tbody>
</table>
E. coli Network: Create the Initial HPD
The edge mapping instructions color the edges in this process

sumHPD(EC1)

E coli gene regulatory network (RegulonDB)
This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.
It is a 2D data set.
##
Axis 1 has 1597 nodes spanning radii from 1 to 1
##
Axes 1 and 1 share 3893 edges
E. coli Network: Assign Node Degree to Radius

EC2 <- mineHPD(EC1, option = "rad <- tot.edge.count")
sumHPD(EC2)

E coli gene regulatory network (RegulonDB)
This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.
It is a 2D data set.
##
Axis 1 has 1597 nodes spanning radii from 1 to 434
##
Axes 1 and 1 share 3893 edges
E. coli Network: Assign Nodes to Axis

EC3 <- mineHPD(EC2, option = "axis <- source.man.sink")
sumHPD(EC3)

E coli gene regulatory network (RegulonDB)
This hive plot data set contains 1597 nodes on 3 axes and 3893 edges.
It is a 2D data set.
##
Axis 1 has 45 nodes spanning radii from 1 to 83
Axis 2 has 1416 nodes spanning radii from 1 to 11
Axis 3 has 136 nodes spanning radii from 2 to 434
##
Axes 1 and 2 share 400 edges
Axes 1 and 3 share 21 edges
Axes 3 and 2 share 3158 edges
Axes 3 and 3 share 314 edges
##
E. coli Network: Clean Up Some Problems

```r
EC4 <- mineHPD(EC3, option = "remove zero edge")

##
## 125 edges that start and end on the same point were removed

sumHPD(EC4)
```

```r
## E coli gene regulatory network (RegulonDB)
## This hive plot data set contains 1597 nodes on 3 axes and 3768 edges.
## It is a 2D data set.
##
## Axis 1 has 45 nodes spanning radii from 1 to 83
## Axis 2 has 1416 nodes spanning radii from 1 to 11
## Axis 3 has 136 nodes spanning radii from 2 to 434
##
## Axes 1 and 2 share 400 edges
## Axes 1 and 3 share 21 edges
## Axes 3 and 2 share 3158 edges
## Axes 3 and 3 share 189 edges
```
E. coli Network: Interpreting the Hive Plot

- Nodes to axes according to role: regulator, workhorse, or manager
- Node radius = edge count/degree
- Edges colored according to role:
 - repressors: red
 - activators: green
 - dual function: orange
E. coli Gene Regulatory Network

Axes plotted using native units
E. coli Gene Regulatory Network
Aaxes plotted using ranked units
E. coli Gene Regulatory Network

Axes plotted using normalized units
E. coli Gene Regulatory Network: Compare to Yan et. al.
3D Hive Plots

- Interactive using rgl1 graphics
- More adjacent axes than for 2D Hive Plots
 - Tetrahedron: 8 adjacent axis pairs, *crossings impossible*
 - Trigonal bipyramid: 9 adjacent axis pairs
 - Octahedron: 12 adjacent axis pairs
- Other approaches to 3D networks...

tetrahedral geometry

trigonal bipyramidal geometry

octahedral geometry
Let’s Make a 3D Hive Plot

Global Landscape of HIV-Human Protein Complexes

Available data:
- HIV-human protein interactions
- Human-human protein interactions
- MiST scores (strength of protein-protein affinity)
- x 2 cell lines

Focus on One Subnet & Conceptualize the Mapping
Details of the Mapping Process

HIV protein

MiST Score (affinity)

human protein

Pol PR RT IN HIV protein human protein MiST Score (affinity) DACB5839496 PRRTINPolD69BCAEF67
3D Hive Plot: Static View

HIV-human interactions in red, radius = MiST score with HEK cells, native units
HIV → human → human → HIV interactions in blue
Proteins w/ ≥ 2 edges shown as larger yellow nodes, otherwise green
3D Hive Plot

HIV-human interactions in red, radius = MiST score with HEK cells, native units
HIV → human → human → HIV interactions in blue
Proteins w/ ≥ 2 edges shown as larger yellow nodes, otherwise green
Possible Extensions (the *To-Do* list)?

- Subtract 2 hive plots & display the result
- Automatically permute the axes in 3D mode with 5 or 6 axes so that the best option can be selected
- Hovering brings up node or edge label (may need to go to a different graphics system)
- More ways to import/mine (better Dot compliance)
- Change splines to bezier curves
- What would you like to see?
HiveR vs. *Perl* Prototype

1. In the prototype one can clone an axis to show connections that would start and end on the same axis.

2. In HiveR, one can simply add a new axis based upon some property of the system. Alternatively, for 2D hive plots, HiveR is able to show edges that start & end on the same axis.

3. No segmentation of an axis is currently possible with HiveR

4. The prototype uses bezier curves to create the edges; HiveR uses splines with a single control point
HivePlotData Objects

<table>
<thead>
<tr>
<th>$nodes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$id</td>
<td>int</td>
<td>Node identifier</td>
<td></td>
</tr>
<tr>
<td>$lab</td>
<td>chr</td>
<td>Node label</td>
<td></td>
</tr>
<tr>
<td>$axis</td>
<td>int</td>
<td>Axis</td>
<td></td>
</tr>
<tr>
<td>$radius</td>
<td>num</td>
<td>Node Radius</td>
<td></td>
</tr>
<tr>
<td>$size</td>
<td>num</td>
<td>Node size</td>
<td></td>
</tr>
<tr>
<td>$color</td>
<td>chr</td>
<td>Node color</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$edges</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$id1</td>
<td>int</td>
<td>Starting node id</td>
<td></td>
</tr>
<tr>
<td>$id2</td>
<td>int</td>
<td>Ending node id</td>
<td></td>
</tr>
<tr>
<td>$weight</td>
<td>num</td>
<td>Width of edge</td>
<td></td>
</tr>
<tr>
<td>$color</td>
<td>chr</td>
<td>Edge color</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$type</th>
<th>chr</th>
<th>2D or 3D plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>$desc</td>
<td>chr</td>
<td>Description</td>
</tr>
<tr>
<td>$axis.cols</td>
<td>chr</td>
<td>Colors for axes</td>
</tr>
<tr>
<td>- attr</td>
<td>chr</td>
<td>”HivePlotData”</td>
</tr>
</tbody>
</table>
Performance: 2D Hives Using grid Graphics

MacBook Pro running OSX 10.7.4 using 8 GB RAM & an Intel i7 chip at 2 GHz
Performance: 3D Hives Using *rgl* Graphics

MacBook Pro running OSX 10.7.4 using 8 GB RAM & an Intel i7 chip at 2 GHz
3D Spline Curves